jueves, 22 de agosto de 2013

Un mundo de variaciones topológicas
La mayor parte de los objetos en estas páginas, tales como la esfera (abajo) que se transforma en primer lugar en un cubo y después en una masa sin forma, o como el imposible neumático elástico de la página derecha, están realizando lo que los topólogos llaman transformaciones. Estas son variaciones en la forma de una superficie que dejan inalteradas ciertas propiedades básicas. Para un topólogo una figura transformada así no ha variado en forma alguna.
Cuando un chiquillo coge una bola de barro, y la transforma en una caja y después en un disco, está realizando transformaciones topológicas similares a las que se ilustran en ésta y en las páginas siguientes. Lo que ha hecho es deformar la bola de barro sin romperla.
Todas las transformaciones topológicas demostradas abajo comprenden una propiedad denominada "el género". Este se define por el número de agujeros que tiene el objeto o, como dicen los topólogos, por el número de cortes circulares cerrados sin intersección o completamente circulares que pueden hacerse en dicha superficie sin romperla en dos partes.
178a
REALIZANDO TRANSFORMACIONES
En las tres filas de variaciones topológicas de arriba, los objetos pueden transformarse uno en el otro al retorcerlos, doblarlos o darles otra forma. Pero una esfera no podría transformarse en rosquilla o una jarra para leche en un cubo, sin hacer o eliminar un agujero.

178b
LA DETERMINACIÓN DEL GÉNERO
Las tres figuras ilustran el género. No se puede hacer ningún corte alrededor de la esfera sin dividirla; por tanto su género es 0. Sólo se puede hacer un corte en una rosquilla sin dividirla: su género es 1. Una figura de 2 agujeros tiene género 2

179a
DANDO LA VUELTA A UN NEUMÁTICO

En un ejercicio de imaginación topológica, un neumático que pueda estirarse infinitamente puede dársele la vuelta sin que se rompa. Primero (parte superior izquierda) el agujero de la válvula (señalado en rojo) se abre estirándola. La abertura después se hace sucesivamente más ancha hasta que hay más agujero que neumático. Al torcerlo dos veces (pasos 6 y 7) se da la vuelta al neumático

179b
GIROS TOPOLÓGICOS
Sacarse un chaleco sin tener que sacarse la chaqueta es un movimiento simple aunque arduo. Los cuadros de abajo muestran el esfuerzo de un hombre por sacarse su chaleco. Desde un punto de vista topológico el chaleco jamás estuvo dentro de la chaqueta.

181a
EL GÉNERO DE CUATRO OBJETOS COTIDIANOS
El amplio conjunto de objetos familiares cuyas superficies pueden identificarse topológicamente, se ilustra en esta página. Arribo, de izquierdo a derecha, se hallan superficies de género 0, 1, 2 o tres o más. Abajo hay un grupo de formas distintas, codo una de las cuales puede transformarse topológicamente. Las superficies del mismo género tienen igual color.

180
TOPOLOGÍA DE UNA CARA
Deformada en el espejo de la “casa de los misterios” la cara del hombre y su reflejo son las mismas: un punto y su vecindad en una, corresponden a un punto y su vecindad en otra
LA TIRA DE MÖBIUS CON UN SOLO LADO
Una tira de Möbius se hace fácilmente con una tira lisa de papel corriente: primero se da media vuelta a la tira y después se unen los extremos para obtener un anillo cerrado.
181a1
181a2
«DIVISIÓN» DE UNA TIRA DE MÖBIUS
Cuando se hace un corte por la mitad de una tira de Möbius podría esperarse dividir la tira en dos. Pero cuando se traza una línea alrededor de la tira (arriba) y la tira se corta a lo largo de la línea, el resultado no es dos tiras sino una tira de dos lados. Una tira de Möbius sólo tiene un borde; el corte añade un segundo borde, y un segundo lado.

7. La "división' de una tira de Möbius
Los topólogos disfrutan creando formas extrañas y objetos raros. Entre los más curiosos de éstos se halla la superficie de un lado, introducida por el matemático alemán y astrónomo Augustus Ferdinand Möbius (1790-1868). En un artículo, Möbius describía su superficie de papel como una tira que tiene "un solo lado". Esta tira de un lado, difícil de imaginar pero fácil de construir (arriba) tiene toda clase de propiedades inesperadas.
Otro matemático alemán, Felix Klein (1849-1925), siguiendo las directrices de Möbius, ideó una botella con una sola superficie (lado opuesto). Dicha botella, de cortarse por la mitad de su longitud, se transformaría entonces en dos tiras de Möbius.
La obra de Möbius y Klein siempre ha fascinado al lego. Hace algunos años un mal poeta escribió:
"Un matemático creía
Que la tira de Möbius tiene sólo una cara.
Usted mucho se reirá
Si la corta por la mitad.
Ya que al dividirla queda en una sola pieza".
Otro poeta terminó la historia:
"Un matemático llamado Klein
Creyó divina la tira de Möbius.
Dijo, si usted pega los bordes de dos tiras
obtendrá una botella igual que la mía".
182b
DANDO COLOR A UNA TIRA DE MÖBIUS
Cualquiera puede pintar un anillo de papel ordinario de color rojo por un lado y verde por el otro. «Pero ni siquiera Picasso podría hacer esto con una tira de Möbius». Si alguien lo intentara vería que la tira tiene únicamente un lado en el que coinciden ambos colores.

183a
TIRA DE MÖBIUS EN TRES PARTES
Una tira de Möbius cortada en tres partes (arriba) da lugar a una nueva sorpresa: Las tijeras hacen dos vueltas completas alrededor de la tira pero sólo un corte unitario continuo. El resultado final de este corte son dos tiras entrelazadas (arriba, parte derecha). Una de las tiras es un aro de dos lados y la otra es ahora una nueva tira de Möbius.

183b
LA BOTELLA QUE NO TIENE INTERIOR
Este modelo de una botella de Klein, que no tiene «ningún interior», pertenece al topólogo Albert W. Tucker, de la Universidad de Princeton. Nadie verá jamás una verdadera botella Klein ya que ésta sólo existe en la imaginación del topólogo, la "botella Klein se atraviesa a si misma sin que haya ningún agujero.

183c
CONSTRUCCIÓN DE LA BOTELLA DE KLEIN
Los tres diagramas de la izquierda ilustran cómo se hace la botella de Klein: (1) un extremo del tubo se convierte en el cuello, el otro extremo en la base; (2) el cuello atraviesa el lado de la botella; (3) el cuello y la base se unen, transformando en una sucesión continua el interior y el exterior

8. Colorear un mapa: el enigma de los topólogos
Los mapas siempre lían fascinado a los topólogos en virtud de ciertas cualidades que poseen. Durante mucho tiempo la regla que han observado los que hacen mapas es que cuatro colores son suficientes para diferenciar cada país de todos sus vecinos inmediatos. El caso de un mapa plano o una esfera es el mismo, ya que cualquier mapa en una esfera puede transformarse en un mapa plano similar agujereando la esfera y aplanándola. Pero hay casos en que se requieren más de cuatro colores. Un mapa trazado en una tira de Möbius requiere seis colores. Y cuando un topólogo enrolla y dobla un mapa plano en forma de rosquilla (a la que llama toro), el mapa que sólo requiere cuatro colores puede necesitar siete
184a 
EL TEOREMA DEL MAPA DE DOS COLORES
Una de las reglas más simples de topología para colorear un mapa afirma que si se pudiera trazar totalmente un mapa plano a base de líneas rectas que empezaran y terminaran en un borde, podría colorearse con dos colores sin que ninguna área adyacente tuviera el mismo color. Esto es cierto sin tener en cuenta el número de líneas que tenga el mapa. Los tres diagramas de arriba demuestran la teoría. A la izquierda hay un mapa plano en dos colores, cuando se añade una línea al azar (centro) todavía se usan dos colores (derecha)

En todo esto, existe para los topólogos un tipo de exasperación constante. Ha podido demostrar que sólo se necesitan seis colores en una tira de Möbius y siete colores, a lo más, en un toro; pero no ha podido demostrar lo que durante mucho tiempo han sabido los que hacen mapas, que cuatro colores son suficientes para cualquier mapa plano o esfera. Los topólogos, desde la época de Möbius han tratado de trazar un mapa plano en el que se necesiten cinco colores: nadie lo ha hecho, pero tampoco nadie ha probado que sea algo que no pueda.
184b
TEOREMA DEL MAPA DE 4 COLORES

La forma más simple para mostrar que se necesitan cuatro colores para un mapa plano es trazar cuatro regiones en forma tal que cada una esté unida con las otras tres, como en el diagrama de arriba. Cada una de las tres áreas exteriores requiere su propio color, y el centro debe tener otro.
184c
En el mapa bastan 3 colores para 7 Estados, pero el octavo Estado debe de pintarse con otro color
185a
EL TEOREMA DEL MAPA DE SEIS COLORES

Un mapa en una tira de Möbius requiere seis colores para que no haya áreas contiguas del mismo color. Pero si se corta la tira, el mapa plano resultante puede iluminarse con sólo cuatro colores. En una tira de Möbius, ningún mapa requiere más de seis colores
185c
EL TEOREMA DEL MAPA DE SIETE COLORES

En cualquier mapa sobre una superficie circular se necesita 7 colores para que ninguna región adyacente tenga el mismo. En las tres figuras, se unen los bordes de un mapa plano para hacer un tubo; los extremos del tubo se unen transformándolo en superficie circular

9. Puentes antiguos y la moderna teoría de la red
La teoría de la red es una de las formas más prácticas de la topología, con aplicaciones a los circuitos eléctricos y a la economía. Se originó hace unos 200 años, gracias a Leonhard Euler, que solucionó los problemas topológicos cien años antes que la topología se hubiera descubierto. Debido a una extraña coincidencia, ambos problemas resultaron ser parte de lo que hoy se llama teoría de la red.
187b
UN LABERINTO VIVIENTE
Los laberintos de jardín hechos a base de arbustos fueron muy populares en la Europa del siglo XVIII. El de Williamsburg, Virginia, es copia fiel de Hampton Court en Inglaterra

187c
PERDIDO EN UNA ISLA

Este laberinto diseñado por un matemático inglés, tiene su meta en el centro de una isla de paredes que están, separadas de las otras paredes del laberinto. Por tanto es imposible llegar a la meta tocando siempre la pared con la mano.
187a
UN FÁCIL CAMINO PARA ENTRAR

En este diagrama del tipo de laberintos como el de Hampton Court (fotografía de arriba) el objetivo es el área abierta en el centro. Se llega fácilmente utilizando una simple regla: escójanse los caminos que no requieren que se levante la mano de la pared.
Los dos crucigramas que interesaron a Euler se referían a redes de líneas que conectaban un número de puntos.
188-189
LOS PUENTES DE KÖNIGSBERG
El antiguo mapa de la izquierda muestra la ciudad prusiana de Königsberg y la curva del río que la divide en cuatro áreas (señaladas por A, B, C y D). Siete puentes unen las áreas (en los círculos blancos). Las líneas rojas de trazo grueso indican todas las posibles rutas entre A, B, C y D, que siguen los puentes.

189a 
El diagrama de Königsberg muestra porque era totalmente imposible cruzar todos los puentes sin volver a cruzar por lo menos uno: en dicha red, como señaló Euler, es inevitable cruzar de nuevo algún puente siempre que hayan tres o más puntos en los cuales converjan una cantidad impar de caminos.

El primero de ellos comprendía los puentes de Königsberg. Había sido una tradición entre las gentes de la ciudad que los siete puentes no podían cruzarse todos en un camino continuo sin volver a cruzar la ruta en algún punto. Euler se dio cuenta de que éstos respondían a un importante principio, y prosiguió para demostrar matemáticamente por qué dicho camino era imposible.
189b189c
LA FÓRMULA DE EULER
En cualquier figura de muchas caras o poliedro, Euler demostró que el número de aristas más dos es siempre igual al número de vértices más el número de lados. La fórmula es e + 2 = v + s. Por lo tanto, un cubo (arriba; tiene 8 vértices, 6 lados y 12 aristas. La fórmula es válida para formas geométricas complejas, como la figura de 240 lados que se muestra. Es un decaedro rómbico en forma de estrella; siempre tiene 360 aristas y 122 vértices.

10. Raro comportamiento de una superficie "transformada en sí misma"
Entre todas las transformaciones que estudia la topología las menos frecuentes, tal vez las menos comunes, son las que aparecen en estas páginas. Para el topólogo, una hoja de papel arrugada y un disco con los distintos puntos en su superficie dirigidos al exterior tienen el mismo tipo de variación. Según palabras de un matemático "se transforman de manera continua". Es decir, son superficies planas en las que todos los puntos posibles están cambiando simultáneamente en un patrón continuo. De tales transformaciones, los matemáticos han derivado el "teorema del punto fijo": Cuando una superficie "se transforma en sí misma" de esta manera, un punto de la superficie permanecerá donde estaba.

191
UN PELIRROJO TOPOLÓGICO
Como muestra el joven de la derecha, la mayor parte de las cabezas tienen un punto, en forma de remolino, del cual irradian todos los cabellos. Topo¡ lógicamente, sería imposible cubrir una esfera con cabello, o con líneas radiantes si no hubiera un punto fijo. Por la misma razón el viento no puede soplar en todas partes de la tierra a la vez.
190a190b
UN PUNTO FIJO SOBRE UNA HOJA
Arrugar una hoja de papel (arriba) ilustra el «teorema de punto fijo». Se coloca primero una hoja de papel numerada sobre un duplicado exacto, de forma tal que todos los puntos de ambas hojas estén alineados. Después se arruga la hoja superior encima de la hoja inferior. Un punto de la hoja arrugada debe estar por encima todavía de su punto inicial.

190c
UN PUNTO FIJO EN UN DISCO
Según el teorema del punto fijo, si todos los puntos alrededor del punto negro del disco de la derecha irradian hacia el exterior en un patrón de flujo continuo en dirección, pero no más allá del límite del disco, un punto (el punto negro) debe permanecer fijo.

No hay comentarios:

Publicar un comentario